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Comparativa de eficacia de los
modelos de redes neuronales

convolucionales UNet

PSPNet

en la segmentacion semantica de
las hojas y frutos de plantas de |i-

tomate

RESUMEN: Las enfermedades, pla-
gas y deficiencias nutricionales en
las plantas se detectan en las hojas
y frutos. La deteccién precisa y no
invasiva usando Deep learning me-
diante la segmentaciéon semantica,
que clasifica cada pixel de una ima-
gen en clases mediante algin mo-
delo de rede neuronal convolucional.
En esta investigacién se implemen-
tan y comparan los modelos UNet y
PSPNet para segmentar pixeles de
imagenes con plantas de jitomate
en las clases: hojas, frutos o fondo.
Los modelos se eligieron por su ca-
pacidad para capturar detalles finos
y robustez en escenarios comple-
jos. Un aporte distintivo es la clasi-
ficacién multiclase, en comparacién
con una segmentacién binaria. El
rendimiento se evalué con métricas
como Accuracy, Precision, Recall,
F1 e loU. UNet presenté un prome-
dio del 89.66% al segmentar hojas
y 88.25% en frutos, mientras PSPNet
obtuvo 87.50% y 81.34%, respecti-
vamente. Los resultados resaltan
el potencial de los modelos UNet y
PSPNet para aplicaciones practicas
en agricultura de precisién, permi-
tiendo la monitorizacién y manejo
eficiente de cultivos mediante seg-
mentacién semantica de las hojas y
frutos de los cultivos de jitomate.
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ABSTRACT: Diseases, pests, and nutritional deficiencies in
plants are detected in leaves and fruits. Accurate and non-inva-
sive detection using deep learning through semantic segmenta-
tion, which classifies each pixel of an image into classes using
a convolutional neural network model. In this research, the UNet
and PSPNet models are implemented and compared to segment
pixels from images of tomato plants into the following classes:
leaves, fruits, or background. The models were chosen for their
ability to capture fine details and their robustness in complex sce-
narios. A distinctive contribution is the multi-class classification,
as opposed to binary segmentation. Performance was evaluated
using metrics such as Accuracy, Precision, Recall, F1, and loU.
UNet averaged 89.66% when segmenting leaves and 88.25% for
fruits, while PSPNet obtained 87.50% and 81.34%, respectively.
The results highlight the potential of the UNet and PSPNet models
for practical applications in precision agriculture, enabling effi-
cient crop monitoring and management through semantic seg-
mentation of tomato crop leaves and fruits.

KEYWORDS: Precision Agriculture, Deep Learning, Convolutional
Neural Networks, Semantic Segmentation, Performance.

INTRODUCCION

La agricultura es una actividad fundamental para la subsistencia
humana, ya que gran parte de los alimentos que se consumen son
generados por este medio [1], [2]. La experiencia del agricultor es
fundamental en los procesos de riego, fertilizacion, deteccion de
enfermedades y plagas. Sin embargo, la naturaleza humana puede
llevar a procesos ineficientes. Durante el siglo XXI, la agricultura ha
experimentado un gran desarrollo tecnologico en busca de mejorar
la cantidad, calidad de los alimentos producidos, reducir costos y el
impacto ambiental [3].
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En los ultimos anos el uso de la Inteligencia Arfificial (1A)
y ofras tecnologias aplicados al cultivo de la tierra han
creado el concepto de Agricultura de Precision (AP) [4].
Entre los objetivos de la AP destaca el proporcionar a
los culfivos los recursos necesarios para su adecuado
desarrollo, mejorando la relacién costo-beneficio.

Los algoritmos de Deep Learning (DL) tienen un lugar
importante en la AP. Un enfoque particular de DL con-
siste en el uso de diferentes modelos de Redes Neu-
ronales Convolucionales (RNC) con variados objetivos
[5]. En AP las RNC se han usado para apoyar diversas
tareas de los agricultores. Wang [6] las empleo en la
deteccion de enfermedades presentes en las hojas de
arboles de peras, Latif [7] las uso RNC para la detec-
cién de condiciones no deseadas en plantios de arroz.
Shoaib [8] implemento las RNC para la deteccion vy
segmentacion de plagas en hojas de tomate. De igual
manera Wei [9] las implemento para la deteccion de
frutos maduros en cultivos de tomate.

La Segmentacion Semantica (SS) es el empleo de
RNC para clasificar cada pixel de una imagen en una
clase en particular [10], [11]. En la AP la SS se ha im-
plementado por diferentes autores, por ejemplo, Kang
presento un método de SS de ramas y manzanas ufi-
lizando un modelo de tipo piramidal [12]. Ni [13] trabajo
con cultivos de arandanos para determinar el grado de
madurez en imagenes con un fondo contrastado. Ma-
jeed [14] empled los modelos de RNC FCN, VGG-16 y
SegNet-VGG-16 para segmentar los tallos de las plan-
tas de uva y tener un parametro de control sobre su
crecimiento.

Este trabajo se presenta y describen las etapas de en-
trenamiento y analisis de resultados de dos modelos
de RNC UNet y PSPNet para realizar SS de las hojas y
frufos de plantas de jitomates cultivadas en condicio-
nes semihidroponicas.

La mayoria de los métodos descritos procesan ima-
genes adquiridas en condiciones de laboratorio y se
centran en una clasificacion binaria entre fondo y ob-
jeto de inferés. Esto plantea interrogantes respecto al
comportamiento de estos y ofros metodos al aplicarse
a imagenes provenientes de ambientes agricolas rea-
les, la viabilidad de efectuar una clasificacion multicla-
se y cual de todos los modelos disponibles ofrece el
mejor desempeno en métricas de rendimiento como la
F1-Score e loU en las condiciones mencionadas.

En el contexto descrito anteriormente son dos las apor-
taciones de este trabajo. La primera es el uso de ima-
genes tomadas en condiciones no controladas, donde
variables como iluminacion, angulos de foma y oclusio-
nes de la lente no se controlan. Este enfoque represen-
ta un escenario mas cercano a las aplicaciones reales
en campo. El segundo aporte consiste en abordar la
tarea de clasificacion multiclase para distinguir hojas,
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frutos y fondo. Para potenciar el entfrenamiento y resul-
tado de los modelos de RNC UNet y PSPNet, ademas
se implementa la técnica de Transfer Learning (TL).

La organizacion del documento es la siguiente: la Sec-
cion 2 describe los recursos utilizados durante el entre-
namiento y la experimentacion, incluyendo el software,
hardware, conjunto de imagenes, su preprocesamien-
to y los valores de los hiperparametros empleados. La
Seccioén 3 presenta y analiza los resultados obtenidos
por los modelos. Finalmente, la Secciéon 4 expone las
conclusiones de la investigacion.

MATERIAL Y METODOS

La implementacion de RNC para realizar tareas de SS
requiere de elementos indispensables como lo es el
conjunto de imagenes a procesar y las mascaras o
anotaciones en donde se identifique lo que se desea
aprenda la RNC. Existen ofros componentes que es
preferible contar con ellos como lo son tarjetas de vi-
deo mas no son indispensable.

Caracteristicas del hardware y software empleados.
La implementacion de los modelos de RNC se realizd
con las caracteristicas hardware y software listadas a
continuacion:

Fabricante: ASUSTeK COMPUTER INC.,, China.

Modelo: X510UNR

Procesador: Inte Core™ i7-8550U CPU @

180GHz x 8.

RAM: 16 GB.

Tarjeta de video: NVIDIA® GeForce® 150MX.

Sistema operativo: Ubuntu 22.04.2 LTS 64 bits.

Version Cuda tool kit: 10.1.243.

Version Cudnn: 7.6.5.

Version Tensorflow: 2.4.1.

Version Keras: 2.4.3.

Version OpenCV: 4.7.0

Conjunto de imagenes

El proceso de entrenamiento de los modelos de RNC
se realizd con un conjunto de imagenes de cultivos de
tomates rojos en invernaderos, el cual es de acceso pu-
blico desde el link: https://www.kaggle.com/datasets/
andrewmvd/tomato-detection [15]. El sitio de descarga
no proporciona informacion referente a las condiciones
de captura de las imagenes, sin embargo, se infiere
por la diversidad entre ellas que no hay condiciones de
captura confroladas como lo es la iluminacion, angulo
de captura de las imagenes y no se hace mencion del
tipo de dispositivo de captura empleado. El conjunto
de imagenes consta de 895 elementos, de los cuales
se seleccionaron aleatoriamente 300, y fueron asignas
180, 60 y 60 imagenes para formar los conjuntos de
Entrenamiento, Validacién y Prueba, el numero de ima-
genes es acotado por el tiempo requerido durante el
etiquetado. El tamano de la muestra es de un 34% del
total de imagenes. La distribucion de las cantidades de
imagenes en los conjuntos de Entrenamiento, Valida-
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cion y Prueba se realizd con base en lo reportado en
literatura, 60%, 20% y 20% respectivamente. La asig-
nacion de las imagenes y sus mascaras a los conjun-
tos se realizé empleando la funcién de tensorflow Split.
Disponible en Google Drive [16].

Etiquetado de imagenes

El etiquetado o marcado de objetos de interés en una
imagen es un proceso previo al entrenamiento y prue-
ba de las RNC, también es usado para medir la eficien-
cia del SS realizado por las RNC. Los pixeles de Las
imagenes seleccionadas fueron etiquetados usando la
herramienta de marcado web “Computer Vision Anno-
tation Tool” (CVAT), la cual accesible desde el link ht-
tps://www.cvat.ai/ [17]. Los pixeles de las imagenes se
marcaron con colores representativos a las clases de
interés del estudio, verde para las hojas, rojo para los
frutos y por default negro para el fondo.

El proceso de efiquetado de los pixeles de las image-
nes genera una distribucion de los pixeles es mostrada
en la Figura 1

Distribucion del etiquetado de los pixeles

o Frutos
m Hojas

m Fondo

Figura 1. Distribucién del etiquetado de los pixeles.
Fuente: Elaboracién propia.

Preprocesamiento de imagenes

Las imagenes que conforman los conjuntos de Entre-
namiento, Validacion y Prueba, asi como sus masca-
ras, tienen dimensiones de 500 x 400 pixeles y forma-
to PNG. Para cumplir los requisitos de enfrada de los
modelos RNC, es requiere ajustar las dimensiones de
las imagenes dependiendo del modelo, dicho ajuste de
tamano se especifica en la seccion de los modelos se-
leccionados. Dentro del preprocesamiento se requiere
para llevar a cabo el proceso entrenamiento la conver-
sén de las mascaras a escala de grises, donde cada
nivel de gris corresponde a una clase. Los procesos
mencionados se realizaron con la libreria OpenCV.

La Figura 2 muestra de izquierda a derecha: la Imagen
original con plantas de jitomate, mascara generada con
el proceso de efiquetado y la imagen resultante del
preprocesamiento requerido para entrenar los mode-
los RNC seleccionados.

W

Figura 2. Ejemplos: Imagen original, mascara, preprocesada.
Fuente: Elaboracién propia.

Métricas de rendimiento.

Es fundamental medir el rendimiento en la tarea de SS
de las hojas y frutos realizada por los modelos RNC.
Las métricas de Accuracy, Precision, Recall, F1-Score
e loU se utilizan con la finalidad de tener un parametro
cuantitativo del desempeno de las RNC.

Para definir las métricas mencionadas, es necesario
definir cuatro conceptos basicos: Verdaderos Positivos
(VP), Verdaderos Negativos (VN), Falsos Positivos (FP)
y Falsos Negativos (FN), observe la Figura 3.

Reales
C Positivos Negativos
Lo 8-
gl P FP
o°
— &
D- Z

Figura 3. Matriz de confusioén.
Fuente: Elaboracién propia.

Usando la matriz de confusion junto con los resultados
de la SS realizada por las RNC y las mascaras de las
imagenes es posible asignar cada pixel de una imagen
a un cuadrante de la matriz de confusion.

La métrica Accuracy es la relacion del numero total de
pixeles clasificados correctamente entre el total de
clasificaciones realizadas por el modelo de RNC y se
define de acuerdo con la Ecuacion 1.

VP+VN
VP+VN+FP+FN '

Accuracy = Ec. ()
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La métrica Precision representa el ratio entre el numero

total de PV con respecto al numero de positivos predi-

chos, esta es definida por la Ecuacion 2.
VP

VP+FP ’

Precision = Ec.(2)
El numero de VP clasificados por el modelo en relaciéon
con el numero total de clasificaciones positivas es me-
dida con la métrica Recall, la cual se expresa de acuer-
do con la Ecuacion 3.

VP

VP+FN ’

Recall = Ec. (3)

F1-Score combina las métricas Precision con Recall y
es definida por la Ecuacion 4.

Precision * Recall

Fl = Score = 2 ceision+ Reca” EC-(4)
El ratio entre los verdaderos positivos entre el total de
clasificaciones correctas se mide en la métricaloU y es

definida en la Ecuacioén 5.
VP

ol =y FPr AN

Ec (5)

Transfer Learning

En los procesos de enfrenamiento con RNC es prefe-
rible contar con grandes cantidades de datos. En caso
de contar con una cantidad limitada de elementos para
realizar el enfrenamiento, es conveniente usar una al-
ternativa para aumentar la eficiencia de las RNC. Una
forma de hacerlo es implementar lo que se denomina
TL, la cual toma el conocimiento adquirido de modelos
de RNC entrenados con grandes volumenes de datos
y con hardware altamente especializado y usarlo como
una capa adicional antes del modelo final a entrenar.

Modelos de RNC seleccionado

En DL existe una variedad de modelos de RNC, los cua-
les tienen gran diversidad de objetivos. En este trabajo
se implementan los modelos UNet y, PSPNet con un
backbone de ResNet mediante TL para mejorar la SS
de las hojas y frutos de jitomate en las imagenes des-
crita.

Modelo de RNC UNet

En 2015 Ronneberger [18], presentd el modelo UNet
para realizar la SS de imagenes médicas. Este modelo
destaca debido a que el 100% de sus capas son con-
volucionales.

El modelo UNet consta de dos etapas: la primera se
encarga de codificar la informacion dentro de la ima-
gen para comprender el contexfo y la segunda etapa
tiene por objeto ampliar simétricamente la informacion
codificada de la primera etapa para localizar con pre-
cision los pixeles mediante una serie de convoluciones
transpuestas. La Figura 4 muestra la estructura de RNC
UNet.
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Backbone Unet
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Figura 4. Estructura del modelo UNet con TL.
Fuente: Elaboracién propia.

Para el modelo de RNC UNet se requiere ajustar las
imagenes pertenecientes a los conjuntos de Entrena-
miento, Validacion y Prueba a 256 x 256 pixeles.

Modelo de RNC PSPNet

El modelo de RNC denominado PSPNet, fue presenta-
do por Zhao [19], esta compuesto por serie de capas
convolucionales profundas, para ser aplicadas en la SS
de imagenes de entornos urbanos. El modelo PSPNet
infegra un modulo de agrupacion piramidal para aumen-
tar la informacion contextual en el proceso de segmen-
tacion. La estructura basica del modelo se observa en
la Figura 5.

Backbone
PSPNet

,,,,,,,

1zl
. iy |

Upsample

2

o
E

Downsample

Figura 5. Estructura del modelo PSPNet con TL.
Fuente: Elaboracién propia.

Se redimensionaron las imagenes que conforman los
conjuntos de Entrenamiento, Validacion y Prueba a 384
x 576 pixeles necesaria para cumplir con la configura-
cion del modelo PSPNet.

La Figura 4 y Figura 5 muestran el backbone del mo-
delo ResNet antes de las RNC seleccionadas. Este co-
nocimiento o pesos del backbone estan disponibles en
la pagina web oficial de Keras, accesible desde el link:
https://keras.io/api/applications/ [20].

Entrenamiento de los modelos

El objetivo del proceso de entrenamiento es permitir
que el modelo de RNC generalice la informacion pro-
porcionada por el etiquetado de las clases y posterior-
mente marque los pixeles de las imagenes del conjun-
to de Prueba, en nuestro caso, es asignar cada pixel a
una de las tres clases de interes.
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El proceso de entrenamiento ajusta los pesos que co-
nectan las capas convoluciones con que esta cons-
truido el modelo de RNC. EI comportamiento de esta
etapa controla con los valores de los hiperparametros
de enfrenamiento. La configuracion empleada de hiper-
parametros es la siguiente:

Funcién de perdida: Categorical Cross-Entropy.

Optimizador usado: Adam

Epocas: 75.

Tasa de aprendizaje: 0.05.

BATCH: 16.

encoder_freeze: True.

Cantidad de elementos en los requeridos con-
juntos:

Entrenamiento 180.

Validacion 60

Prueba 60.

Los valores de los hiperametros se determinaron en
base a las siguientes consideraciones: la funcion de
pérdida Categorical Cross-Entropy es adecuada para
segmentacion multiclase. El optimizador Adam pro-
porciona un entrenamiento eficiente y estable. Se de-
finieron 75 épocas para asegurar la convergencia sin
sobreajuste.

La tasa de aprendizaje fue establecida con mediante
experiencia, no se usé sheduler para adaptar el valor
asignado. El tamano de batch de 16 es debido a la ca-
pacidad hardware empleado. Finalmente, el congela-
miento del encoder aprovecha pesos preentrenados
en ResNet, facilitando el aprendizaje ante un conjunto
de datos reducido. Es importante mencionar que no se
utilizo técnica alguna referente al early stopping.

RESULTADOS

El entrenamiento de los modelos UNet y PSPNet se
realizo con los hiperparametros y conjuntos de image-
nes mencionados anteriormente. La Figura 6 y Figura
7 muestran el comportamiento de la funcion Accuracy
resultado del proceso de entrenamiento con las image-
nes de los conjuntos de Entrenamiento y Validacion con
las modelos de RNC UNet y PSPNet respectivamente.

Accuracy de la RNC UNet

[ Epocasl i Ee]

Figura 6. Comportamiento del Accuracy de la RNC PSPNet.
Fuente: Elaboracién propia.

Accuracy de la RNC PSPNet

<Oow-So0o0o0>

s Conjunto de validacion
Conjunto de entrenamiento

0 10 20 30 Epocaéﬂ 50 60 70
Figura 7. Comportamiento del Accuracy de la RNC PSPNet.
Fuente: Elaboracién propia.

El comportamiento de la funcion Accuracy en el proce-
so de entrenamiento mostrado en la Figura 6 y Figura
7 para las RNC UNet y PSPNet, se aprecia una serie de
saltos en las primeras 20 épocas, estabilizandose en el
resto del proceso de aprendizaje de los patrones de
hojas y frutos. Cuantitativa ambos modelos alcanzan en
el conjunto de entrenamiento valores superiores a 0.95,
mientras que el rendimiento es inferior con el conjunto
de validacion, lo que es considerado como un compor-
tamiento normal en el proceso de entrenamiento.

Un ejemplo del resultado de la SS realizada por ambos
modelos se muestra en la Figura 8.

s— L
Imagen eriginal

a) Models UNet b) Modelo PSPNet

55 UNet Hojas

55 PSPNot Hojas

55 UMet Frutos £5 PSPMNet Frutos

Figura 8. Ejemplos de SS realizada por los modelos.

a) Resultados de la SS del modelo UNet. b) Resultado de la
SS del modelo PSPNet.

Fuente: Elaboracién propia
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La Tabla 1 muestra los resultados cuantitativos con las Tabla 3 Prueba t Student emparejada métrica loU SS Ho-

métricas de desempeno en la SS de las imagenes del jas.
conjunto de Prueba. T Student métrica IoU SS de Hojas
Parametro PSPNet [ UNet
Tabla 1 Resultados de las métricas de rendimiento al seg- . 30.19 33.20
mentar las imagenes del conjunto de prueba. Media ’ i
Precision | 85.09% | 7921% | 86.04% | 84.47% | |Varianza 303.69 | 277.04
Recall 93.19% 82.84% | 95.86% | 91.97% Observaciones 60 60
Fl-score 87.59% | 80.13% | 89.58% | 87.70% Diferencia Hipotética media 0
ToU 80.19% 68.56% | 83.20% | 78.90% Estadistico Valor
. 0 0 o
Promedio 87.50% 81.34% | 89.66% | 88.25% Estadistico t 4.0
Fuente: Elaboracién propia.
prop Grados de libertad 59
Valor critico t 2 colas 9.91E-05
Los resultados de la Tabla 1, muestran un desempe-
P-valor 2 colas 2.00

no superior del modelo UNet en relacion con el mo-
delo PSPNet en la SS de las imagenes del conjunto
de Prueba.

De la Tabla 2 a la Tabla 5 muestran datos de la
prueba t de Student para muestras emparejadas de
dos colas con una confiabilidad del 95% (a=0.05),
realizado sobre los valores F1-Score e loU obteni-
dos en la SS realizada por los modelos probados.

El anélisis estadistico basado en pruebas t empa-
rejadas de las cuatro Tablas anteriores realizadas
sobre las métricas F1-Score e loU para las clases
hojas y frutos demuestra que las diferencias entre
las medias los modelos UNet y PSPNet son esta-
disticamente significativas, dado que los valores
p asociados son menores al nivel de significancia
a=0.05. Lo anterior reafirma la superioridad del mo-
delo UNet en SS de hojas y frutos en imagenes de
plantas de jitomate.

Tabla 2 Prueba t Student emparejada métrica F1-Score SS

Fuente: Elaboracién propia.

Tabla 4 Prueba t Student emparejada métrica F1-Score SS

Frutos.
T Student métrica F1 SS de frutos

Parametro PSPNet| UNet
Media 80.13 87.70
Varianza 167.15 | 61.71
Observaciones 60 60
Diferencia Hipotética media 0

Estadistico Valor
Estadistico t -6.07
Grados de libertad 59
Valor critico t 2 colas 1.03E-07
P-valor 2 colas 2.00

Fuente: Elaboracién propia.

Tabla 5 Prueba t Student emparejada métrica loU SS Fru-

Hojas. fos.
T Student métrica F1 SS de Hojas T Student métrica IoU SS de frutos
Parametro PSPNet | UNet Parametro PSPNet | UNet
Media 87.59 89.58 Media 68.56 78.90
Varianza 223.64 | 204.22 Varianza 263.50 | 137.92
Observaciones 60 60 Observaciones 60 60
Diferencia Hipotética media 0 Diferencia Hipotética media 0
Estadistico Valor Estadistico Valor
Estadistico t -4.26 Estadistico t -7.01
Grados de libertad 59 Grados de libertad 59
Valor critico t 2 colas 7.99E-05 Valor critico t 2 colas 2.86E-09
P-valor 2 colas 2.00 P-valor 2 colas 2.00

Fuente: Elaboracién propia.

Fuente: Elaboracién propia.
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CONCLUSIONES

La comparacién cuantitativa entre los modelos UNet
y PSPNet demuestra que el modelo UNet supera
a PSPNet en métricas clave. Para la SS de hojas,
UNet alcanzé un promedio de 89.58% en F1-Score y
83.20% en loU, superiores a los 87.59% y 80.19% ob-
tenidos por el modelo PSPNet, respectivamente. En
la SS de frutos, UNet reportd un promedio de 87.70%
en F1-Score y 78.90% en loU, superando al modelo
PSPNet con 80.13% y 68.56% respectivamente. Ade-
mas, las pruebas t de Student confirman estadistica-
mente la superioridad de las medias del modelo UNet
por sobre PSPNet dentro del contexto manejado en
la investigacion.

Los resultados y el anélisis presentado muestran el
potencial de las RNC al realizar la SS de los pixeles
de las hojas y frutos en imagenes de plantas de jito-
mate. Lo anterior plantea la posibilidad de desarrollar
un modelo propio basado en la UNet o bien probar
con diferentes backbones que mejor los resultados
obtenidos.

El mejoramiento del desempeno de los modelos
evaluados se abordara con multiples enfoques. El
primero es mejorar el proceso de entrenamiento au-
mentando el tamano del conjunto de imagenes dis-
ponibles, ya sea etiquetando otras imagenes de la
fuente o mediante la técnica de “data augmentation”.

Al ser un conjunto pequeno de imagenes se plantea
la posibilidad de implementar validacion cruzada me-
diante k-fold para evaluar el desempeno de los mo-
delos probados, permitiendo obtener estimaciones
mas robustas. De la misma manera se pueden usar
algunas técnicas que disminuyan el riesgo de sobre
ajuste, como lo es el early stopping y sheduler.

El error humano en el etiquetado de las iméagenes al
ser un proceso manual es un factor que afecta el en-
trenamiento de los modelos y al posterior célculo de
las meétricas, 10 que expone la necesidad de revisar
a detalle este proceso de etiquetado, mediante una
validacién cruzada con varios efiquetadores, guiados
por de expertos en fisiologia vegetal.

Las imagenes resultantes de la SS de las hojas ob-
tenidas mediante los modelos evaluados pueden ser
utilizadas como entradas a otros métodos reporta-
dos en la literatura como los cuales realizan la de-
teccion e identificacion de plagas y enfermedades
en las plantas. Estos métodos requieren imagenes de
hojas libres de otros elementos que se encuentran
de manera habitual como parte del fondo de estas.
Por ofro lado, las imagenes segmentadas de los fru-
tos de jitomate mediante SS pueden ser empleadas
para desarrollar estimadores de cosecha o de grado
de madurez de los frutos, contribuyendo asi a aplica-
ciones practicas en el monitoreo y gestion agricola.
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