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RESUMEN: Las enfermedades, pla-
gas y deficiencias nutricionales en 
las plantas se detectan en las hojas 
y frutos. La detección precisa y no 
invasiva usando Deep learning me-
diante la segmentación semántica, 
que clasifica cada píxel de una ima-
gen en clases mediante algún mo-
delo de rede neuronal convolucional. 
En esta investigación se implemen-
tan y comparan los modelos UNet y 
PSPNet para segmentar píxeles de 
imágenes con plantas de jitomate 
en las clases:  hojas, frutos o fondo. 
Los modelos se eligieron por su ca-
pacidad para capturar detalles finos 
y robustez en escenarios comple-
jos. Un aporte distintivo es la clasi-
ficación multiclase, en comparación 
con una segmentación binaria. El 
rendimiento se evaluó con métricas 
como Accuracy, Precision, Recall, 
F1 e IoU. UNet presentó un prome-
dio del 89.66% al segmentar hojas 
y 88.25% en frutos, mientras PSPNet 
obtuvo 87.50% y 81.34%, respecti-
vamente. Los resultados resaltan 
el potencial de los modelos UNet y 
PSPNet para aplicaciones prácticas 
en agricultura de precisión, permi-
tiendo la monitorización y manejo 
eficiente de cultivos mediante seg-
mentación semántica de las hojas y 
frutos de los cultivos de jitomate.

PALABRAS CLAVE: Agricultura de 
Precisión, Deep Learning, Redes 
Neuronales Convolucionales Seg-
mentación Semántica, Desempeño.

ABSTRACT: Diseases, pests, and nutritional deficiencies in 
plants are detected in leaves and fruits. Accurate and non-inva-
sive detection using deep learning through semantic segmenta-
tion, which classifies each pixel of an image into classes using 
a convolutional neural network model. In this research, the UNet 
and PSPNet models are implemented and compared to segment 
pixels from images of tomato plants into the following classes: 
leaves, fruits, or background. The models were chosen for their 
ability to capture fine details and their robustness in complex sce-
narios. A distinctive contribution is the multi-class classification, 
as opposed to binary segmentation. Performance was evaluated 
using metrics such as Accuracy, Precision, Recall, F1, and IoU. 
UNet averaged 89.66% when segmenting leaves and 88.25% for 
fruits, while PSPNet obtained 87.50% and 81.34%, respectively. 
The results highlight the potential of the UNet and PSPNet models 
for practical applications in precision agriculture, enabling effi-
cient crop monitoring and management through semantic seg-
mentation of tomato crop leaves and fruits.

KEYWORDS: Precision Agriculture, Deep Learning, Convolutional 
Neural Networks, Semantic Segmentation, Performance.

INTRODUCCIÓN
La agricultura es una actividad fundamental para la subsistencia 
humana, ya que gran parte de los alimentos que se consumen son 
generados por este medio [1], [2]. La experiencia del agricultor es 
fundamental en los procesos de riego, fertilización, detección de 
enfermedades y plagas. Sin embargo, la naturaleza humana puede 
llevar a procesos ineficientes. Durante el siglo XXI, la agricultura ha 
experimentado un gran desarrollo tecnológico en busca de mejorar 
la cantidad, calidad de los alimentos producidos, reducir costos y el 
impacto ambiental [3]. 
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En los últimos años el uso de la Inteligencia Artificial (IA) 
y otras tecnologías aplicados al cultivo de la tierra han 
creado el concepto de Agricultura de Precisión (AP) [4]. 
Entre los objetivos de la AP destaca el proporcionar a 
los cultivos los recursos necesarios para su adecuado 
desarrollo, mejorando la relación costo-beneficio.

Los algoritmos de Deep Learning (DL) tienen un lugar 
importante en la AP. Un enfoque particular de DL con-
siste en el uso de diferentes modelos de Redes Neu-
ronales Convolucionales (RNC) con variados objetivos 
[5]. En AP las RNC se han usado para apoyar diversas 
tareas de los agricultores. Wang [6] las empleo en la 
detección de enfermedades presentes en las hojas de 
árboles de peras, Latif [7] las uso RNC para la detec-
ción de condiciones no deseadas en plantíos de arroz. 
Shoaib [8] implemento las RNC para la detección y 
segmentación de plagas en hojas de tomate. De igual 
manera Wei [9] las implemento para la detección de 
frutos maduros en cultivos de tomate. 

La Segmentación Semántica (SS) es el empleo de 
RNC para clasificar cada píxel de una imagen en una 
clase en particular [10], [11]. En la AP la SS se ha im-
plementado por diferentes autores, por ejemplo, Kang 
presento un método de SS de ramas y manzanas uti-
lizando un modelo de tipo piramidal [12]. Ni [13] trabajó 
con cultivos de arándanos para determinar el grado de 
madurez en imágenes con un fondo contrastado. Ma-
jeed [14] empleó los modelos de RNC FCN, VGG-16 y 
SegNet-VGG-16 para segmentar los tallos de las plan-
tas de uva y tener un parámetro de control sobre su 
crecimiento. 

Este trabajo se presenta y describen las etapas de en-
trenamiento y análisis de resultados de dos modelos 
de RNC UNet y PSPNet para realizar SS de las hojas y 
frutos de plantas de jitomates cultivadas en condicio-
nes semihidropónicas. 

La mayoría de los métodos descritos procesan imá-
genes adquiridas en condiciones de laboratorio y se 
centran en una clasificación binaria entre fondo y ob-
jeto de interés. Esto plantea interrogantes respecto al 
comportamiento de estos y otros métodos al aplicarse 
a imágenes provenientes de ambientes agrícolas rea-
les, la viabilidad de efectuar una clasificación multicla-
se y cuál de todos los modelos disponibles ofrece el 
mejor desempeño en métricas de rendimiento como la 
F1-Score e IoU en las condiciones mencionadas. 

En el contexto descrito anteriormente son dos las apor-
taciones de este trabajo. La primera es el uso de imá-
genes tomadas en condiciones no controladas, donde 
variables como iluminación, ángulos de toma y oclusio-
nes de la lente no se controlan. Este enfoque represen-
ta un escenario más cercano a las aplicaciones reales 
en campo. El segundo aporte consiste en abordar la 
tarea de clasificación multiclase para distinguir hojas, 

frutos y fondo. Para potenciar el entrenamiento y resul-
tado de los modelos de RNC UNet y PSPNet, además 
se implementa la técnica de Transfer Learning (TL).

La organización del documento es la siguiente: la Sec-
ción 2 describe los recursos utilizados durante el entre-
namiento y la experimentación, incluyendo el software, 
hardware, conjunto de imágenes, su preprocesamien-
to y los valores de los hiperparámetros empleados. La 
Sección 3 presenta y analiza los resultados obtenidos 
por los modelos. Finalmente, la Sección 4 expone las 
conclusiones de la investigación.

MATERIAL Y MÉTODOS
La implementación de RNC para realizar tareas de SS 
requiere de elementos indispensables como lo es el 
conjunto de imágenes a procesar y las máscaras o 
anotaciones en donde se identifique lo que se desea 
aprenda la RNC. Existen otros componentes que es 
preferible contar con ellos como lo son tarjetas de vi-
deo más no son indispensable. 

Características del hardware y software empleados.
La implementación de los modelos de RNC se realizó 
con las características hardware y software listadas a 
continuación:
	 Fabricante: ASUSTeK COMPUTER INC., China.
	 Modelo: X510UNR
	 Procesador:  Inte Core™ i7-8550U CPU @ 		
		  1.80GHz × 8. 
	 RAM: 16 GB.
	 Tarjeta de video: NVIDIA® GeForce® 150MX.
	 Sistema operativo: Ubuntu 22.04.2 LTS 64 bits.
	 Versión Cuda tool kit: 10.1.243.
	 Versión Cudnn: 7.6.5.
	 Versión Tensorflow: 2.4.1.    
	 Versión Keras: 2.4.3. 
	 Versión OpenCV: 4.7.0  

Conjunto de imágenes
El proceso de entrenamiento de los modelos de RNC 
se realizó con un conjunto de imágenes de cultivos de 
tomates rojos en invernaderos, el cual es de acceso pú-
blico desde el link: https://www.kaggle.com/datasets/
andrewmvd/tomato-detection [15]. El sitio de descarga 
no proporciona información referente a las condiciones 
de captura de las imágenes, sin embargo, se infiere 
por la diversidad entre ellas que no hay condiciones de 
captura controladas como lo es la iluminación, ángulo 
de captura de las imágenes y no se hace mención del 
tipo de dispositivo de captura empleado. El conjunto 
de imágenes consta de 895 elementos, de los cuales 
se seleccionaron aleatoriamente 300, y fueron asignas 
180, 60 y 60 imágenes para formar los conjuntos de 
Entrenamiento, Validación y Prueba, el número de imá-
genes es acotado por el tiempo requerido durante el 
etiquetado. El tamaño de la muestra es de un 34% del 
total de imágenes. La distribución de las cantidades de 
imágenes en los conjuntos de Entrenamiento, Valida-
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Figura 3. Matriz de confusión. 
Fuente: Elaboración propia.

Figura 2. Ejemplos: Imagen original, máscara, preprocesada.                                                    
Fuente: Elaboración propia.

ción y Prueba se realizó con base en lo reportado en 
literatura, 60%, 20% y 20% respectivamente. La asig-
nación de las imágenes y sus máscaras a los conjun-
tos se realizó empleando la función de tensorflow Split. 
Disponible en Google Drive [16].

Etiquetado de imágenes
El etiquetado o marcado de objetos de interés en una 
imagen es un proceso previo al entrenamiento y prue-
ba de las RNC, también es usado para medir la eficien-
cia del SS realizado por las RNC. Los píxeles de Las 
imágenes seleccionadas fueron etiquetados usando la 
herramienta de marcado web “Computer Vision Anno-
tation Tool” (CVAT), la cual accesible desde el link ht-
tps://www.cvat.ai/ [17]. Los pixeles de las imágenes se 
marcaron con colores    representativos a las clases de 
interés del estudio, verde para las hojas, rojo para los 
frutos y por default negro para el fondo. 

El proceso de etiquetado de los píxeles de las imáge-
nes genera una distribución de los píxeles es mostrada 
en la Figura 1.

La Figura 2 muestra de izquierda a derecha: la Imagen 
original con plantas de jitomate, máscara generada con 
el proceso de etiquetado y la imagen resultante del 
preprocesamiento requerido para entrenar los mode-
los RNC seleccionados.             

Figura 1. Distribución del etiquetado de los píxeles.
Fuente: Elaboración propia.

Usando la matriz de confusión junto con los resultados 
de la SS realizada por las RNC y las máscaras de las 
imágenes es posible asignar cada píxel de una imagen 
a un cuadrante de la matriz de confusión.

La métrica Accuracy es la relación del número total de 
píxeles clasificados correctamente entre el total de 
clasificaciones realizadas por el modelo de RNC y se 
define de acuerdo con la Ecuación 1. 

                 Ec. (1)             𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑉𝑉𝑉𝑉+𝑉𝑉𝑉𝑉
𝑉𝑉𝑉𝑉+𝑉𝑉𝑉𝑉+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹  .            Ec. (1) 

 

Preprocesamiento de imágenes
Las imágenes que conforman los conjuntos de Entre-
namiento, Validación y Prueba, así como sus másca-
ras, tienen dimensiones de 500 × 400 píxeles y forma-
to PNG. Para cumplir los requisitos de entrada de los 
modelos RNC, es requiere ajustar las dimensiones de 
las imágenes dependiendo del modelo, dicho ajuste de 
tamaño se especifica en la sección de los modelos se-
leccionados. Dentro del preprocesamiento se requiere 
para llevar a cabo el proceso entrenamiento la conver-
són de las máscaras a escala de grises, donde cada 
nivel de gris corresponde a una clase. Los procesos 
mencionados se realizaron con la librería OpenCV.

Métricas de rendimiento.
Es fundamental medir el rendimiento en la tarea de SS 
de las hojas y frutos realizada por los modelos RNC. 
Las métricas de Accuracy, Precision, Recall, F1-Score 
e IoU se utilizan con la finalidad de tener un parámetro 
cuantitativo del desempeño de las RNC.

Para definir las métricas mencionadas, es necesario 
definir cuatro conceptos básicos: Verdaderos Positivos 
(VP), Verdaderos Negativos (VN), Falsos Positivos (FP) 
y Falsos Negativos (FN), observe la Figura 3. 
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La métrica Precisión representa el ratio entre el número 
total de PV con respecto al número de positivos predi-
chos, esta es definida por la Ecuación 2.

Ec. (2)

El número de VP clasificados por el modelo en relación 
con el número total de clasificaciones positivas es me-
dida con la métrica Recall, la cual se expresa de acuer-
do con la Ecuación 3.

Ec. (3)

F1-Score combina las métricas Precision con Recall y 
es definida por la Ecuación 4.
         

 Ec. (4)

El ratio entre los verdaderos positivos entre el total de 
clasificaciones correctas se mide en la métrica IoU y es 
definida en la Ecuación 5.

Ec (5)

Transfer Learning
En los procesos de entrenamiento con RNC es prefe-
rible contar con grandes cantidades de datos. En caso 
de contar con una cantidad limitada de elementos para 
realizar el entrenamiento, es conveniente usar una al-
ternativa para aumentar la eficiencia de las RNC. Una 
forma de hacerlo es implementar lo que se denomina 
TL, la cual toma el conocimiento adquirido de modelos 
de RNC entrenados con grandes volúmenes de datos 
y con hardware altamente especializado y usarlo como 
una capa adicional antes del modelo final a entrenar. 

Modelos de RNC seleccionado
En DL existe una variedad de modelos de RNC, los cua-
les tienen gran diversidad de objetivos. En este trabajo 
se implementan los modelos UNet y, PSPNet con un 
backbone de ResNet mediante TL para mejorar la SS 
de las hojas y frutos de jitomate en las imágenes des-
crita.

Modelo de RNC UNet
En 2015 Ronneberger [18], presentó el modelo UNet 
para realizar la SS de imágenes médicas. Este modelo 
destaca debido a que el 100% de sus capas son con-
volucionales.

El modelo UNet consta de dos etapas: la primera se 
encarga de codificar la información dentro de la ima-
gen para comprender el contexto y la segunda etapa 
tiene por objeto ampliar simétricamente la información 
codificada de la primera etapa para localizar con pre-
cisión los píxeles mediante una serie de convoluciones 
transpuestas. La Figura 4 muestra la estructura de RNC 
UNet.

Se redimensionaron las imágenes que conforman los 
conjuntos de Entrenamiento, Validación y Prueba a 384 
× 576 píxeles necesaria para cumplir con la configura-
ción del modelo PSPNet.

La Figura 4 y Figura 5 muestran el backbone del mo-
delo ResNet antes de las RNC seleccionadas. Este co-
nocimiento o pesos del backbone están disponibles en 
la página web oficial de Keras, accesible desde el link: 
https://keras.io/api/applications/ [20].

Entrenamiento de los modelos
El objetivo del proceso de entrenamiento es permitir 
que el modelo de RNC generalice la información pro-
porcionada por el etiquetado de las clases y posterior-
mente marque los píxeles de las imágenes del conjun-
to de Prueba, en nuestro caso, es asignar cada píxel a 
una de las tres clases de interés. 

Figura 4. Estructura del modelo UNet con TL.  
Fuente: Elaboración propia.

Figura 5. Estructura del modelo PSPNet con TL. 
Fuente: Elaboración propia.

Para el modelo de RNC UNet se requiere ajustar las 
imágenes pertenecientes a los conjuntos de Entrena-
miento, Validación y Prueba a 256 × 256 píxeles.

Modelo de RNC PSPNet
El modelo de RNC denominado PSPNet, fue presenta-
do por Zhao [19], está compuesto por serie de capas 
convolucionales profundas, para ser aplicadas en la SS 
de imágenes de entornos urbanos. El modelo PSPNet 
integra un módulo de agrupación piramidal para aumen-
tar la información contextual en el proceso de segmen-
tación. La estructura básica del modelo se observa en 
la Figura 5.

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑉𝑉𝑉𝑉
𝑉𝑉𝑉𝑉+𝐹𝐹𝐹𝐹  .                  Ec. (2) 

  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑉𝑉𝑉𝑉
𝑉𝑉𝑉𝑉+𝐹𝐹𝐹𝐹  .                     Ec. (3) 

𝐹𝐹1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 2 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 .      Ec. (4) 

𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑉𝑉𝑉𝑉
𝑉𝑉𝑉𝑉 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹 . 
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Figura 8. Ejemplos de SS realizada por los modelos. 
a) Resultados de la SS del modelo UNet. b) Resultado de la 
SS del modelo PSPNet.         
 Fuente: Elaboración propia

Figura 6. Comportamiento del Accuracy de la RNC PSPNet.
Fuente: Elaboración propia.

Figura 7. Comportamiento del Accuracy de la RNC PSPNet.                                                               
Fuente: Elaboración propia.

El proceso de entrenamiento ajusta los pesos que co-
nectan las capas convoluciones con que está cons-
truido el modelo de RNC. El comportamiento de esta 
etapa controla con los valores de los hiperparámetros 
de entrenamiento. La configuración empleada de hiper-
parámetros es la siguiente:

	 Función de perdida: Categorical Cross-Entropy.
	 Optimizador usado: Adam
	 Épocas: 75.
	 Tasa de aprendizaje: 0.05.
	 BATCH: 16.
	 encoder_freeze: True.
	 Cantidad de elementos en los requeridos con-
juntos:
	 Entrenamiento 180.
	 Validación 60
	 Prueba 60.

Los valores de los hiperámetros se determinaron en 
base a las siguientes consideraciones: la función de 
pérdida Categorical Cross-Entropy es adecuada para 
segmentación multiclase. El optimizador Adam pro-
porciona un entrenamiento eficiente y estable. Se de-
finieron 75 épocas para asegurar la convergencia sin 
sobreajuste. 

La tasa de aprendizaje fue establecida con mediante 
experiencia, no se usó sheduler para adaptar el valor 
asignado. Él tamaño de batch de 16 es debido a la ca-
pacidad hardware empleado. Finalmente, el congela-
miento del encoder aprovecha pesos preentrenados 
en ResNet, facilitando el aprendizaje ante un conjunto 
de datos reducido. Es importante mencionar que no se 
utilizó técnica alguna referente al early stopping.

RESULTADOS
El entrenamiento de los modelos UNet y PSPNet se 
realizó con los hiperparámetros y conjuntos de imáge-
nes mencionados anteriormente. La Figura 6 y Figura 
7 muestran el comportamiento de la función Accuracy 
resultado del proceso de entrenamiento con las imáge-
nes de los conjuntos de Entrenamiento y Validación con 
las modelos de RNC UNet y PSPNet respectivamente. 

El comportamiento de la función Accuracy en el proce-
so de entrenamiento mostrado en la Figura 6 y Figura 
7 para las RNC UNet y PSPNet, se aprecia una serie de 
saltos en las primeras 20 épocas, estabilizándose en el 
resto del proceso de aprendizaje de los patrones de 
hojas y frutos. Cuantitativa ambos modelos alcanzan en 
el conjunto de entrenamiento valores superiores a 0.95, 
mientras que el rendimiento es inferior con el conjunto 
de validación, lo que es considerado como un compor-
tamiento normal en el proceso de entrenamiento.
 
Un ejemplo del resultado de la SS realizada por ambos 
modelos se muestra en la Figura 8.
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Fuente: Elaboración propia.

Fuente: Elaboración propia.

Fuente: Elaboración propia.

Fuente: Elaboración propia.

Fuente: Elaboración propia.

Tabla 1 Resultados de las métricas de rendimiento al seg-
mentar las imágenes del conjunto de prueba.

Tabla 2 Prueba t Student emparejada métrica F1-Score SS 
Hojas.

Tabla 3 Prueba t Student emparejada métrica IoU SS Ho-
jas.

Tabla 4 Prueba t Student emparejada métrica F1-Score SS 
Frutos.

Tabla 5 Prueba t Student emparejada métrica IoU SS Fru-
tos.

 
 
  

 
 

 

  

 

 

 

 

 

 

 

 

 

 

 

Tabla 1 Resultados de las métricas de rendimiento al segmentar las imágenes del conjunto de prueba. 

Métrica PSPNet 
Hojas 

PSPNet 
Frutos 

UNet 
Hojas 

UNet 
Frutos 

Accuracy 91.46% 95.95% 93.60% 98.22% 
Precision 85.09% 79.21% 86.04% 84.47% 
Recall 93.19% 82.84% 95.86% 91.97% 
F1-score 87.59% 80.13% 89.58% 87.70% 
IoU 80.19% 68.56% 83.20% 78.90% 
Promedio 87.50% 81.34% 89.66% 88.25% 

Fuente: Elaboración propia 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
  

 
 

 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Tabla 2 Prueba t Student emparejada métrica F1-Score SS Hojas 

T Student métrica F1 SS de Hojas 
Parámetro PSPNet UNet 

Media 87.59 89.58 

Varianza 223.64 204.22 

Observaciones 60 60 
Diferencia Hipotética media 0 

Estadístico Valor 
Estadístico t -4.26 
Grados de libertad 59 
Valor critico t 2 colas 7.99E-05 
P-valor 2 colas 2.00 

Fuente: Elaboración propia 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
  

 
 

 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Tabla 3 Prueba t Student emparejada métrica IoU SS Hojas 

T Student métrica IoU SS de Hojas 
Parámetro PSPNet UNet 

Media 80.19 83.20 

Varianza 303.69 277.04 

Observaciones 60 60 
Diferencia Hipotética media 0 

Estadístico Valor 
Estadístico t -4.20 
Grados de libertad 59 
Valor critico t 2 colas 9.91E-05 
P-valor 2 colas 2.00 

Fuente: Elaboración propia 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
  

 
 

 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Tabla 4 Prueba t Student emparejada métrica F1-Score SS Frutos 

T Student métrica F1 SS de frutos 
Parámetro PSPNet UNet 

Media 80.13 87.70 
Varianza 167.15 61.71 
Observaciones 60 60 
Diferencia Hipotética media 0 

Estadístico Valor 
Estadístico t -6.07 
Grados de libertad 59 
Valor critico t 2 colas 1.03E-07 
P-valor 2 colas 2.00 

Fuente: Elaboración propia 
 

 

 
 
 
 
 
 
 
 
 
 
 

 
 
  

 
 

 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Tabla 5 Prueba t Student emparejada métrica IoU SS Frutos 

T Student métrica IoU SS de frutos 
Parámetro PSPNet UNet 

Media 68.56 78.90 

Varianza 263.50 137.92 

Observaciones 60 60 
Diferencia Hipotética media 0 

Estadístico Valor 
Estadístico t -7.01 
Grados de libertad 59 
Valor critico t 2 colas 2.86E-09 
P-valor 2 colas 2.00 

Fuente: Elaboración propia 
 

 
 
 
 
 

La Tabla  1 muestra los resultados cuantitativos con las 
métricas de desempeño en la SS de las imágenes del 
conjunto de Prueba.

Los resultados de la Tabla 1, muestran un desempe-
ño superior del modelo UNet en relación con el mo-
delo PSPNet en la SS de las imágenes del conjunto 
de Prueba. 

De la Tabla 2 a la Tabla 5 muestran datos de la 
prueba t de Student para muestras emparejadas de 
dos colas con una confiabilidad del 95% (α=0.05), 
realizado sobre los valores F1-Score e IoU obteni-
dos en la SS realizada por los modelos probados. 

El análisis estadístico basado en pruebas t empa-
rejadas de las cuatro Tablas anteriores realizadas 
sobre las métricas F1-Score e IoU para las clases 
hojas y frutos demuestra que las diferencias entre 
las medias los modelos UNet y PSPNet son esta-
dísticamente significativas, dado que los valores 
p asociados son menores al nivel de significancia 
α=0.05. Lo anterior reafirma la superioridad del mo-
delo UNet en SS de hojas y frutos en imágenes de 
plantas de jitomate.
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CONCLUSIONES
La comparación cuantitativa entre los modelos UNet 
y PSPNet demuestra que el modelo UNet supera 
a PSPNet en métricas clave. Para la SS de hojas, 
UNet alcanzó un promedio de 89.58% en F1-Score y 
83.20% en IoU, superiores a los 87.59% y 80.19% ob-
tenidos por el modelo PSPNet, respectivamente. En 
la SS de frutos, UNet reportó un promedio de 87.70% 
en F1-Score y 78.90% en IoU, superando al modelo 
PSPNet con 80.13% y 68.56% respectivamente. Ade-
más, las pruebas t de Student confirman estadística-
mente la superioridad de las medias del modelo UNet 
por sobre PSPNet dentro del contexto manejado en 
la investigación.

Los resultados y el análisis presentado muestran el 
potencial de las RNC al realizar la SS de los pixeles 
de las hojas y frutos en imágenes de plantas de jito-
mate. Lo anterior plantea la posibilidad de desarrollar 
un modelo propio basado en la UNet o bien probar 
con diferentes backbones que mejor los resultados 
obtenidos. 

El mejoramiento del desempeño de los modelos 
evaluados se abordará con múltiples enfoques. El 
primero es mejorar el proceso de entrenamiento au-
mentando el tamaño del conjunto de imágenes dis-
ponibles, ya sea etiquetando otras imágenes de la 
fuente o mediante la técnica de “data augmentation”. 

Al ser un conjunto pequeño de imágenes se plantea 
la posibilidad de implementar validación cruzada me-
diante k-fold para evaluar el desempeño de los mo-
delos probados, permitiendo obtener estimaciones 
más robustas. De la misma manera se pueden usar 
algunas técnicas que disminuyan el riesgo de sobre 
ajuste, como lo es el early stopping y sheduler.

El error humano en el etiquetado de las imágenes al 
ser un proceso manual es un factor que afecta el en-
trenamiento de los modelos y al posterior cálculo de 
las métricas, lo que expone la necesidad de revisar 
a detalle este proceso de etiquetado, mediante una 
validación cruzada con varios etiquetadores, guiados 
por de expertos en fisiología vegetal. 

Las imágenes resultantes de la SS de las hojas ob-
tenidas mediante los modelos evaluados pueden ser 
utilizadas como entradas a otros métodos reporta-
dos en la literatura como los cuales realizan la de-
tección e identificación de plagas y enfermedades 
en las plantas. Estos métodos requieren imágenes de 
hojas libres de otros elementos que se encuentran 
de manera habitual como parte del fondo de estas. 
Por otro lado, las imágenes segmentadas de los fru-
tos de jitomate mediante SS pueden ser empleadas 
para desarrollar estimadores de cosecha o de grado 
de madurez de los frutos, contribuyendo así a aplica-
ciones prácticas en el monitoreo y gestión agrícola.
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